ABSTRACTS OF THE PROCEEDINGS

of the 21st International Scientific Symposium on Nutrition of Farm Animals

RADENCI
08. in 09. november 2012
November 8th and 9th, 2012
21. mednarodno
znanstveno posvetovanje
o prehrani domačih živali
Zadračevi-Erjavčevi dnevi 2012

ABSTRACTS OF THE PROCEEDINGS

of the 21st International
Scientific Symposium on
Nutrition of Farm Animals
Zadravec-Erjavec Days 2012

RADENCI
08. in 09. november 2012
November 8th and 9th, 2012

Organizacijski odbor/Organizing Committee

Predsednik/Chairman
dr. Stanko Kapun

Člani/Members
mag. Tatjana Čeh
Marjana Špor
mag. Aleš Horvat
Franca Režonja
Maja Slavič
Darinca Horvat

Uredniški odbor/Editorial Board
mag. Tatjana Čeh
de. Stanko Kapun

Organizator/Organiser
KGZS-Zavod MS, Štefana Kovača 49, 5000 Murska Sobota;
e-pošta/E-mail: kgzs.zavod.ms@gov.si; http://www.kgzs-ms.si/
Izdajo zborka izvlečkov predavanj in izvedbo posvetovanja so finančno omogočili:

Kmetijsko gozdnarska zbornica Slovenije,
Kmetijsko gozdnarski zavod Murska Sobota,

REPUBLICA SLOVENIJA
MINISTROV ZA KMETIJSVO IN OKOLJE

in sponzorji

Grafično oblikovanje: Radio Murski val, d. o. o.
Tisk: Animus, grafična delavnica, Marjan Dovščika, s. p.
Naklada: 250 izvodov

Murska Sobota, november 2012

Zadnja:
Kmetijsko gozdnarska zbornica Slovenije
Kmetijsko gozdnarski zavod Murska Sobota

CIP: Kataloški zapis o izdaji
Naslovne in univerzitetne izdaji, Ljubljana

MEDSKO KOBOO neusmereno posvetovanje o prehrani domačih živali (22.; 2012., Razm. 1.
Praznovanje dnevov 2012, Razm. 2. November 8th and 9th 2012 / 11. mednarodno
mednarodno mednarodno posvetovanje o prehrani domačih živali [nudil] Zdravstvena špica [črnu]
2012. 08. in 09. novembra 2012. organizacije, organizacije KOŽLJ - zavod M5, organiseri
odbor Tajtaju Ceb. in Hanso Kaprun - Murska Sobota - Kmetijsko gozdnarska zbornica
Slovenije, Kmetijsko gozdnarski zavod, 2012

ISBN 978-961-90351-8-8
2012/2012
KAZALO

11 Herbert Steingass, Edwin Westreicher-Kristen, Markus Rodlutschord
Untersuchungen in vitro und in situ zum protein- und energiewert von trockenschlempen
in vitro and in situ investigations on protein and energy value of distillers dried grains with solubles

12 Natasa Schreuder, Herbert Steingass, Patricia Leberl, Markus Rodlutschord
der futterwert von bierabbrühen beim weizenkörner
krmna vrednost pivskih tropsin za preživkovatce
feeding value of brewers grains for ruminants

13 Heiko Scholz, Elke von Heimendahl, Frank Menn
Einsatz eines pansen geschützten Carnitinporduktene bei Milchkühen in der transitphase und der hochlaktation
application of protected L-carnitine in dairy cows during transition and high lactation period

14 Ajda Kermananer, Tatjana Pirman
Vodnje prehriane krov molznic na paši
dairy cow nutrition management on pasture

15 Tatjana Pirman, Ajda Kermananer
Pomen ukvarjene oskrbe z energijo za uspešno vodnje prehriane krov molznic
the importance of balanced energy supply for efficient dairy cow nutrition management

16 Vera Becher, Thomas Ette, Anton Obermaier, Hubert Spielberg, Markus Rodlutschord
Einfluss einer unterschiedlichen versorgung mit energie auf die futteraufnahme und lebendmasseentwicklung von junggrindern der rassen fleckvieh und brainvieh
influence of different energy supply on feed intake and growth of simmental and brown swiss dairy heifers

17 Maksimiljan Brus, Milan Repič, Jože Murko, Marjan Janžeković
vpliv dodatka rjavih alg (ascophyllum nodosum) na dnevni prihast in zdravstveno stanje telet po velevid vi
influence of brown algae (ascophyllum nodosum) on daily gain and health status of calves after housing

18 Breda Jakovac-Strelič, Karin Šringč, Anja Nanjo, Niso Hobiš, Gabriela Tucvar Kulcher
dokazovanje mikotoksinov in silagas
detection of mycotoxins in silages

19 Tomaz Znidarsič, Drugo Bahnik, Jože Vehbič
 novo regresijske enačbe za napovedovanje ene ujni vrednosti voluminozne krm
new regression equations for the prediction of forage energy value

20 Martina Planinc, Ajda Kermananer, Špela Malovrh, Milena Kovač
klavni izkoriščen in masa kl avnih trupov kuncen slovene sk linje sika
kayaking percentage and carcass weight of sika rabbits

21 Janja Urancar, Martina Planinc, Ajda Kermananer, Milena Kovač, Špela Malovrh
parametri disperzije za številke sebek pri kuncih
dispersion parameters for teats number in rabbits

22 Patricia Leberl, Lisa Wahl, Hans Schenkkel
Futterqualität extensiver schafweiden in baden-württemberg - möglicherkeiten und grenzen für die schafhaltung
kakovost krm iz ekstinzivnih pašnikov ovac v baden württemberg - možnosti in omrežje za reko ovac
feed quality of extensive sheep pastures in baden-württemberg - possibilities and limits for sheep farming

25 Péter J. Polgár, András Rádil, Szabolcs Bene
futteraufnahme der merinoschaf auf der weide
feed consumption of merino sheep on pasture conditions
21 Vrška Tomazin, Tamara Frankl, Aleka Levar, Janez Saloh
VLOGA NEKATALJIH SIZOMER VITAMINA E PRI OKSIDACIJSKEM STRESU IN NJIHOV VPLIV NA EKSPRESIJU GENOV THE ROLE OF DIFFERENT ISOMERS OF VITAMIN E ON OXIDATIVE STRESS AND THEIR EFFECT ON GENE EXPRESSION

25 Maja Ivanova Smodič Škof, Mitja Nakrst, Aleš Gregoric
VLIV KRMILNjenja S SLADKORNIJO SIRUPPJ NA DOLOŽIVOST ČEBEL (Apis mellifera carnica) EFFECT OF FEEDING WITH SUGAR SYRUPS ON HONEYBEE (Apis mellifera carnica) LONGEVITY

26 Ben Molnik, Janez Jeretina, Janez Jenko, Dрагo Babnik
OCENA VPLIVA DOŽIVNE DEORE MED TELITVAMA IN MLEČNOSTI NA EKONOMSKI REZULTAT PRIREJE MLEKA THE ECONOMIC EFFECT OF DIFFERENT CAUSING INTERNAL WITHIN DIFFERENT MILK PRODUCTION LEVELS

27 Janez Jenko, Tomaz Perpar
OD PRAVE K FUNKCIONALNI DOLOŽIVOSTI FROM TRUE TO FUNCTIONAL LONGEVITY

28 Andreja Opara, Andrej Razpet, Betka Logar, Drago Babnik
DOLOŽIVost pasmi goveda na podlagi mikrosatelitnih označevalov DETERMINING CATTLE BREEDS ON THE BASIS OF MICROSATELLITE MARKERS

29 Sonja Heinitz, Eva Weiß, Rainer Mosenthin
INTESTINAL MICROBIO-TANATHEAL INTERACTIONS AND THEIR POSSIBLE DIETARY MODULATION IN PIGS USED AS ANIMAL MODEL IN HUMAN NUTRITION KORISTNI UČINKI ČESEVKE MIKROFLORE IN MOŽNOST NJOVHE PRIHANJANJE MODULACIJE V PRAŠČIH UPORABNI KOT ŽIVALSKI MODEL V PREGANI LJUDI

30 Eva Weiss, Meike Ekhoud, Renata Urbisytė, Barbara Metzger-Zebelj, Nadja Sauer, Adri Ratriyanto, Rainer Mosenthin
EFFECT OF COMBINED FEED ADDITIVES ON NUTRIENT DIGESTIBILITY AND MARKER BACTERIA IN ILEAL DIGESTA OF PIGLETS VPLIV KOMBINACIJE KRMIHNIH DOBAVKOV NA PREDVJVISIVOST HRANIL IN OZNAČEVALNE BAKTERIJE V ILEALNEM DELU PRIHBNEGA TRAKTA PUISKOV

31 Nina Batorč, Serge Dubois, Jean Noblet, Michel Bonneau, Marjeta-Čandeš Potokar, Etienne Labussiere
VLIV KOLIKIČNIH ZAVIDITIH MAŠOBOJ NA PRESNENO ENERGIJE TER NALAGANJE PROTEINOV IN MAŠOBOJ PRI IMUNOKASTRIRANIH MIRJANSKIH EFFECTS OF DIETARY FAT INTAKE ON ENERGY METABOLISM AND PROTEIN AND LIPID DEPOSITION IN IMMUNOCASTRATED MALE PIGS

32 Janja Kristl, Andreja Urbanek Krajen, Maksimiljan Brus, Dejan Škorfjan
VSEBNOST TANINOV V POSAMEZNIMI KRMIH IN KRAMNIH MŠANCAH ZA PRAŠICE PETANČA THE CONTENT OF TANNINS IN FEED COMPONENTS AND IN FEEDS FOR GROWING PIGS

33 Špela Malovrh, Milena Kovač
VZORCI PRI IZLOČEVANJU SYVINJ NA SLOVENSKIH KMETIJAH CIRRING PATTERNS IN ROWS ON SLOVENIAN FAMILY FARMS

34 Jože Verbič, Tomaz Perpar, Janez Jeretina
PRESOJA UKREPNIH PROGRAMOV RAZVOJA PODEZELJA Z VEHRA IČINKA NA IZPUSTE TOPOLOGRIJNIH PLINOV OPINION ON THE MEASURES OF RURAL DEVELOPMENT PROGRAMME FROM THE VIEWPOINT OF THEIR EFFECT ON EMISSIONS OF GREENHOUSE GASES

35 Anastazija Geceljan, Braniko Kramberger, Miran Podvršnik
OKOLJSKA VREDNOST PREZIMNIH DOSEJKOV IN NJIHOVIH MEŠANCIH V NJIŠKEM KOLOBARJU ENVIRONMENTAL BENEFITS OF WINTER COVER CROPS AND THEIR MIXTURES IN FIELD ROTATION

36 Stane Klemenčič, Jože Rakovec, Črt Rozman, Gregor Skok, Stanislava Klemenčič-Kosi
UPRAVILJANJA S TVIGANJEM ZAHRADNI TOČE V SLOVENIJI NAIL RISK MANAGEMENT IN SLOVENIA

38 INDEKS AVTORJEV INDEX OF AUTHORS
IZVLEČEK

Na podlagi neodvisnega validacijskega niza vzorcev zelene krme (n=19), travnih silaž (n=6) in mrve (n=1) z znanimi in vivo določenimi prebavljivostmi smo preverjali zanesljivost 5 različnih postopkov ocenjevanja energijske vrednosti krme. Preverjali smo naslednje postopke: A - regresijske enačbe, ki zahtevajo komponente Weendske analize, izpeljane pa so bile na podlagi plina, določenega s Hohenheimskim plinskim testom (VP), B – neposredne NIRS umeritve za vsebnost presnovljive energije (ME) in neto energije za laktacijo (NEL), ki so bile narejene na podlagi sestave vzorcev in VP, C – Weendska analiza in NIRS umeritve za VP in vlakna netopna v kislem detergentu (KDV_{OS}), v drugem koraku pa račun po enačbi GfE (2008), D - NIRS umeritve za Weendsko analizo, VP ter KDV_{OS}, v drugem koraku pa račun po enačbi GfE (2008), E – Weendska analiza in DLG preglednice. In vivo ocenjene vsebnosti NEL so bile pri postopkih A, B, C, D in E v povprečju podcenjene za 0,04 ± 0,36, 0,15 ± 0,34, 0,10 ± 0,32, 0,13 ± 0,29 in 0,13 ± 0,41 MJ NEL kg⁻¹ sušine. Najmanjša povprečna absolutna odstopanja od in vivo ocen smo dosegli s postopkoma A in D (0,27 MJ NEL kg⁻¹ sušine), sledili so postopki C, B in E (0,28, 0,31 in 0,32 MJ NEL kg⁻¹ sušine). Za laboratorije, ki ne razpolagajo z NIRS umeritvami za količino plina po hohenheimskem plinskem preskusu smo predlagali regresijske enačbe za napovedovanje energijske vrednosti krme na podlagi rezultatov Weendske analize. Enačbe temeljijo na 303 vzorcih, ki smo jim vsebnosti ME in NEL določili na podlagi sestave in VP po enačbi GfE (2008). Ugotovili smo, da so te enačbe zanesljivejše od ocenjevanja krme na podlagi kemijske sestave in DLG preglednice.

Ključne besede: voluminozna krma, energijska vrednost, nove enačbe

NEW REGRESSION EQUATIONS FOR THE PREDICTION OF FORAGE ENERGY VALUE

ABSTRACT

Five different procedures of estimation of energy value of forages were tested on the basis of independent validation test comprising samples of fresh forage (n=19), grass silages (n=6) and hay (n=1) with known in vivo assessed digestibilities. The following procedures were examined: A – regression equations which require components of Weende analyses and were developed on the basis of gas production obtained by the means of Hohenheim gas test (VP), B – direct NIRS calibrations for ME and NEL, which were developed on the basis of sample composition and VP, C – Weende analyses and NIRS calibrations for VP and acid detergent insoluble fibre (KDV_{OS}), in second step calculation according to GfE (2008) equation, D - NIRS calibrations for Weende analysis, VP and KDV_{OS}, in second step calculation according to GfE (2008) equation, E – Weende analyses and DLG tables. In vivo estimated NEL concentrations were in procedures A, B, C, D and E on average underestimated for 0.04 ± 0.36, 0.15 ± 0.34, 0.10 ± 0.32, 0.13 ± 0.29 and 0.13 ± 0.41 MJ NEL kg⁻¹ dry matter. The lowest average absolute deviations from in vivo estimates were obtained by procedures A and D (0.27 MJ NEL kg⁻¹ dry matter) followed by procedures...
C, B and E (0.28, 0.31 in 0.32 MJ NEL kg\(^{-1}\) dry matter). For laboratories where NIRS calibrations for gas production obtained by the means of Hohenheim gas test are not available regression equations for prediction of energy value on the basis of the results of Weende analyses were suggested. Equations are based on 303 samples for which the concentrations of ME and NEL were assessed on the basis of their composition and VP according to equation GfE (2008). It was found that these equations are more reliable than forage evaluation on the basis of chemical composition and DLG tables.

Keywords: forage, energy value, new equations

1. UVOD

Namen tega dela je bil preveriti ujemanje različnih načinov ocene energijske vrednosti voluminozne krme na podlagi novejše nemške regresijske enačbe (GfE, 2008), pa tudi ocene energijske vrednosti na podlagi DLG preglednic (DLG, 1997), z ocenami na podlagi *in vivo* določenih prebavljiivosti. Namen dela je tudi izdelati in predlagati regresijske enačbe za oceno energijske vrednosti voluminozne krme na podlagi kemične sestave, s pomočjo katerih bodo lahko energijsko vrednost ocenjevali tudi laboratorij, ki ne razpolagajo z *in vitro* metodami ali umeritvenimi enačbami za neposredno ocenjevanje NEL ali ME z NIRS metodo.
2. MATERIAL IN METODE DELA

Raziskava predstavlja nadaljevanje predhodne raziskave (Žnidaršič in sod., 2011), zato je nabor vzorcev travnih silaž, mrve in zelene krme s podatki o VP pri in vitro HPP in kemični sestavi enak kot v omenjenem prispevku (n = 314). Da bi povečali zanesljivost ocenjevanja energijske vrednosti voluminozne krme z enačbo GfE (2008) smo k 58 že uporabljenim vzorcem voluminozne krme v omenjeni raziskavi po enakem postopku dodali še 28 vzorcev mrve, travnih silaž in zelene krme, jim v laboratoriju določili KDVO\textsubscript{OS} in ocenili energijsko vrednost po GfE (2008) enačbi. Da bi lahko uporabniku ponudili čim bolj točne in enostavne rešitve za oceno energijske vrednosti krme smo v nadaljevanju to ocenili po več različnih postopkih (pregl. 1). Pri postopku A smo regresijske enačbe za oceno ME in NEL na podlagi kemične sestave izdelali ločeno za prvo košnjo, drugo in naslednje košnje ter enačbo za vse košnje (pregl. 3). Pri tem smo uporabili multiplo regresijsko analizo v okviru statističnega programskega paketa Statgraphics Centurion XVI. Na podlagi vzorcev z laboratorijsko določeno vsebnostjo KDVO\textsubscript{OS} (n = 86) smo izdelali NIRS umeritveno enačbo za KDVO\textsubscript{OS} in to ocenili pri vseh vzorcih z znanim podatkom o zapestni košnji (n = 303). Pri postopku B smo za izdelavo NIRS umeritev za ME in NEL uporabili 86 načrtne izbrane vzorcevev. Pri postopku C in D smo NIRS umeritev za oceno VP in kemične sestave izdelali na vseh 314 vzorcih z laboratorijsko izmerjenim VP in kemično sestavo. Pri postopku E smo prebavljevostne koeficiente izračunali z interpolacijo na podlagi vsebnosti surove vlaknine in pripadajočih koeficientov v DLG preglednicah (DLG, 1997). Vse načine ocenjevanja ME in NEL smo preverili na neodvisnem validacijskem nizu vzorcev zelene krme, travnih silaž in mrve (n = 26), pri katerih je bila energijska vrednost ocenjena s pomočjo in vivo prebavljevosti.

Preglednica 1: Postopki za oceno ME in NEL pri validacijskem nizu
Table 1: Procedures for the estimation of ME and NEL in the validation set

<table>
<thead>
<tr>
<th>Postopek</th>
<th>Način ocene ME in NEL validac. niza</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>regresijske enačbe na podlagi kem. sestave iz pregl. 2</td>
<td>kem. sest. v lab., plin in vitro, KDVO\textsubscript{OS} z NIRS, izračun ME in NEL po GfE (2008), izdelava regresijskih enačb na podlagi kem. sest.</td>
</tr>
<tr>
<td>B</td>
<td>NIRS umeritve</td>
<td>kem. sest. v lab., plin in vitro, KDVO\textsubscript{OS} v lab., izračun ME in NEL po GfE (2008), umeritev NIRS-a za direktno oceno ME in NEL</td>
</tr>
<tr>
<td>E</td>
<td>DLG (1997)</td>
<td>izbor preb. koef. na podlagi kemične sestave in izračun ME in NEL po klasičnem postopku</td>
</tr>
</tbody>
</table>
3. REZULTATI IN RAZPRAVA

Merila, ki opisujejo ujemanje različnih postopkov ocene energijske vrednosti krme s postopkom na podlagi \textit{in vivo} določenih prebavljivostnih koeficientov so predstavljena v preglednici 2. Povezave med ocenami in \textit{in vivo} določenimi vrednostmi so prikazane tudi grafično (grafikon 1). Glede na to, da so rezultati za vsebnost ME skladni z rezultati za vsebnost NEL, predstavljamo v preglednici 2 in na grafikonu 1 samo rezultate za vsebnost NEL.

Sistemična odstopanja vseh obravnavanih postopkov od \textit{in vivo} določenih vrednosti so bila razmeroma majhna (\(d\) od 0,04 MJ NEL na kg sušine pri postopku A do 0,15 MJ NEL na kg sušine pri postopku B). Povprečna razlika med oceno in \textit{in vivo} določeno vrednostjo (\(\bar{d}\)) pa v našem primeru ni najbolj primerno merilo za ocenjevanje postopkov ocenjevanja krme, saj so bila sistemična odstopanja bistveno večja od sistematičnih. Pri ocenjevanju krme nas mnogo bolj kot to, za koliko bodo ocene v povprečju odstopale od pravih vrednosti zanima, koliko bo odstopala ocena za posamezni vzorec. Odstopanja posameznih vzorcev lahko ocenimo na podlagi standardnega odklona razlik (s\(_d\)), na podlagi največjega odstopanja od \textit{in vivo} določene vrednosti ali na podlagi povprečnega odstopanja od \textit{in vivo} določene vrednosti (PAO). Po vseh teh merilih se je za najustreznejšo izkazal postopek D (pregl. 2), torej postopek, pri katerem smo z NIRS ocenili komponente Weendske analize, KDV\(_{OS}\) in VP, nato pa z enačbo GfE (2008) izračunali vsebnost NEL. Ta postopek je bil celo boljši od postopka C, ki je temeljil na enakih izhodiščih, le da je bila Weenda analiza namesto z NIRS narejena s klassičnim postopkom. Dobro se je izkazal tudi postopek B, ki temelji na neposrednih NIRS umertvah za vsebnost NEL v krmi. Glede na to, da so bile NIRS umeritvene enačbe za oceno kemične sestave in VP (postopek D) izdelane na precej večjemu naboru vzorcev (za komponente Weenda analize in VP n = 314, za KDV\(_{OS}\) n = 86), kot NIRS umeritvene enačbe za neposredno oceno NEL (postopek B, n = 86) bi lahko nekoliko manjše zanesljivost postopka B povezala tudi z manjšim številom vzorcev in s tem povezano manjše robustnostjo NIRS umeritvenih enačb.

Za laboratorije, ki ne razpolagajo z \textit{in vitro} metodami ali umeritvenimi enačbami za neposredno ocenjevanje NEL ali ME z metodo NIRS, prideta v poštev postopka A in E. Postopek A, ki temelji na regresijskih enačbah, ki so bile razvite na podlagi HPP, vključuje pa le komponente Weenda analize (pregl. 3) je glede PAO posameznega vzorca od \textit{in vivo} določene vrednosti enakovreden postopku D. Njegova šibka točka pa je razmeroma veliko največje odstopanje. Pri najslabše ocenjenem vzorcu je postopek A odstopal za 0,95 MJ NEL, najboljši postopek (D) pa za 0,55 MJ NEL na kg sušine. Postopek E, ki temelji na rezultatih klasično izvedene Weenda analize in prebavljivostnih koeficientov iz DLG (1997) tabel je bil v vseh pogledih najslabši. Do podobnih ugotovitev so prišli že Žnidaršič in sod. (2002), ki so z NIRS umeritvenimi enačbami za neposredno oceno NEL, to ocenili točneje, kot s prebavljivostnimi koeficienti iz DLG preglednic (DLG, 1997).
Preglednica 2: Zanesljivost napovedi vsebnosti NEL (MJ na kg sušine), ocenjene na podlagi in vivo prebavljivostnih poskusov, z različnimi postopki (A, B, C, D, E), ki so primerni za uporabo v praksi

Table 2: Reliability of prediction of NEL concentration (MJ per kg of dry matter) as estimated on the basis of in vivo digestibility trials, by the means of different procedures (A, B, C, D, E) which are suitable for the use in practice

<table>
<thead>
<tr>
<th>Postopek Procedure</th>
<th>x in vivo</th>
<th>Ocena Estimate</th>
<th>d̄</th>
<th>s_d</th>
<th>Največje odstopanje Maximal deviation</th>
<th>PAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5,81</td>
<td>0,04</td>
<td>0,36</td>
<td>-0,95</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>5,71</td>
<td>0,15</td>
<td>0,34</td>
<td>-0,70</td>
<td>0,31</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5,75</td>
<td>0,10</td>
<td>0,32</td>
<td>-0,69</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>5,72</td>
<td>0,13</td>
<td>0,29</td>
<td>0,55</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>5,72</td>
<td>0,13</td>
<td>0,41</td>
<td>-1,43</td>
<td>0,32</td>
<td></td>
</tr>
</tbody>
</table>

x – povprečna ocena/ average estimate; d̄ – povprečna razlika/ average difference; d_i – razlika med NEL, ocenjeno z in vivo poskus in NEL, ocenjeno po različnih postopkih (A, B, C, D, E)/ difference between net energy for lactation (NEL) estimated by the means of in vivo trials and NEL estimated by different procedures (A, B, C, D, E); s_d – standardni odklon razlik/ standard deviation of differences; PAO - povprečno absolutno odstopanje različno ocenjenih vsebnosti NEL od in vivo ocen/ average absolute deviation of differently estimated concentrations of NEL from in vivo estimates; PAO=∑|d_i|/n; postopki ocenjevanja NEL A, B, C, D, E, so opisani v poglavju 2/ procedures of NEL estimation: A – regression equations which require components of Weende analyses and were developed on the basis of gas production obtained by the means of Hohenheim gas test (VP), B – direct NIRS calibrations for ME and NEL, which were developed on the basis of sample composition and VP, C – Weende analyses and NIRS calibrations for VP and acid detergent insoluble fibre (KDV_os), in second step calculation according to GfE (2008) equation, D - NIRS calibrations for Weende analysis, VP and KDV_os, in second step calculation according to GfE (2008) equation, E – Weende analyses and DLG tables.

Ne glede na to, da lahko postopke ocenjevanja nedvoumno razvrstimo glede njihove zanesljivosti pri napovedovanju in vivo določene energijske vrednosti krme, pa so realno gledano razlike med njimi majhne. Povprečno absolutno odstopanje ocen za posamezne vzorce od in vivo vrednosti se je za obravnavane postopke gibalo od 0,27 MJ NEL na kg sušine pri postopku D do 0,32 MJ NEL na kg sušine pri postopku E. Razlika (0,05 MJ NEL na kg sušine) pomeni manj kot 1 % ocenjene srednje vrednosti vzorcev. Nekoliko večje so le razlike pri najslabše ocenjenih vzorcih, ki so od in vivo določene vrednosti odstopali od 0,55 MJ NEL na kg sušine pri postopku D do 1,43 MJ NEL na kg sušine pri postopku E.
Grafikon 1: Povezava med neto energijo za laktacijo, ocenjeno na podlagi in vivo prebavljudnosti (NEL in vivo) in NEL, ocenjeno po različnih hitrih postopkih

Graph 1: Relation between net energy for lactation estimated on the basis of in vivo digestibilities (NEL in vivo) and NEL estimated according different rapid procedures

V kolikor nimamo na voljo podatkov o VP ali vsebnosti KDV_os lahko energijsko vrednost ocenimo z regresijskimi enačbami na podlagi kemične sestave (preglednica 3). Enačbe smo izdelali po postopku A, opisanem v drugem poglavju s tem, da smo z namenom čim točnejše ocene vzorce razdelili glede na način konzerviranja (zelena krma, travna silaža, mrva) ter zaporeno košnjo (prva, druga in naslednje košnje, vse košnje).
Tabela 3: Regresijske enačbe za oceno energije vrednosti voluminozne krme na podlagi kemične ses

<table>
<thead>
<tr>
<th>Št. No.</th>
<th>Vrsta krme Type of forage</th>
<th>Enačba – Equation</th>
<th>R^2</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zelena krma, 1. košnja</td>
<td>$ME = 13,74 - 0,0036 SB - 0,0152 SV1 + 0,0096 SP$</td>
<td>0,87</td>
<td>0,32</td>
</tr>
<tr>
<td>2</td>
<td>Zelena krma, 2. in naslednje. košnje</td>
<td>$NEL = 8,70 - 0,0032 SB + 0,0081 SP - 0,0112 SV1$</td>
<td>0,88</td>
<td>0,23</td>
</tr>
<tr>
<td>3</td>
<td>Zelena krma, vse košnje</td>
<td>$ME = 14,0171 - 0,0145914 SV1 - 0,00865867 SP + 0,0197737 SM$</td>
<td>0,79</td>
<td>0,38</td>
</tr>
<tr>
<td>4</td>
<td>Mrva, 1. košnja</td>
<td>$NEL = 10,60 + 0,0086 SB + 0,0471 SM - 0,0095 SV1 - 0,0089 SP$</td>
<td>0,73</td>
<td>0,43</td>
</tr>
<tr>
<td>5</td>
<td>Mrva, vse košnje</td>
<td>$ME = 14,10 - 0,01715 SV1$</td>
<td>0,68</td>
<td>0,39</td>
</tr>
<tr>
<td>6</td>
<td>Travna silaža, 1. košnja</td>
<td>$NEL = 6,33579 + 0,00297532 SB - 0,00669583 SV1 + 0,025358 SM$</td>
<td>0,76</td>
<td>0,29</td>
</tr>
<tr>
<td>7</td>
<td>Travna silaža, 2. in naslednje košnje</td>
<td>$ME = 12,18 + 0,0050 SB - 0,0114 SV1 + 0,0232 SM - 0,0095 SP$</td>
<td>0,72</td>
<td>0,33</td>
</tr>
<tr>
<td>8</td>
<td>Travna silaža, vse košnje</td>
<td>$NEL = 11,19 + 0,0055 SB - 0,0081 SV1 + 0,0162 SM - 0,0091 SP$</td>
<td>0,65</td>
<td>0,38</td>
</tr>
<tr>
<td>9</td>
<td>Travna silaža, 1. košnja</td>
<td>$NEL = 6,38 + 0,0055 SB - 0,0067 SV1 + 0,0312 SM - 0,0051 SP$</td>
<td>0,74</td>
<td>0,30</td>
</tr>
<tr>
<td>10</td>
<td>Travna silaža, 2. in naslednje košnje</td>
<td>$ME = 13,65 - 0,0086 SP + 0,0246 SM - 0,0141 SV1$</td>
<td>0,81</td>
<td>0,25</td>
</tr>
<tr>
<td>11</td>
<td>Mrva, vse košnje</td>
<td>$NEL = 8,81 - 0,0120 SV1$</td>
<td>0,69</td>
<td>0,27</td>
</tr>
<tr>
<td>12</td>
<td>Mrva, 1. košnja</td>
<td>$NEL = 14,0171 - 0,0145914 SV1 - 0,00865867 SP + 0,0197737 SM$</td>
<td>0,79</td>
<td>0,38</td>
</tr>
<tr>
<td>13</td>
<td>Mrva, vse košnje</td>
<td>$ME = 10,60 + 0,0086 SB + 0,0471 SM - 0,0095 SV1 - 0,0089 SP$</td>
<td>0,73</td>
<td>0,43</td>
</tr>
<tr>
<td>14</td>
<td>Mrva, vse košnje</td>
<td>$NEL = 14,10 - 0,01715 SV1$</td>
<td>0,68</td>
<td>0,39</td>
</tr>
<tr>
<td>15</td>
<td>Travna silaža, 1. košnja</td>
<td>$NEL = 6,33579 + 0,00297532 SB - 0,00669583 SV1 + 0,025358 SM$</td>
<td>0,76</td>
<td>0,29</td>
</tr>
<tr>
<td>16</td>
<td>Travna silaža, 2. in naslednje košnje</td>
<td>$ME = 12,18 + 0,0050 SB - 0,0114 SV1 + 0,0232 SM - 0,0095 SP$</td>
<td>0,72</td>
<td>0,33</td>
</tr>
<tr>
<td>17</td>
<td>Travna silaža, vse košnje</td>
<td>$NEL = 11,19 + 0,0055 SB - 0,0081 SV1 + 0,0162 SM - 0,0091 SP$</td>
<td>0,65</td>
<td>0,38</td>
</tr>
<tr>
<td>18</td>
<td>Travna silaža, vse košnje</td>
<td>$NEL = 7,35 + 0,0025 SB - 0,0072 SV1 - 0,0058 SP + 0,0139 SM$</td>
<td>0,69</td>
<td>0,25</td>
</tr>
</tbody>
</table>

k^2 – determinacijski koeficient/ coefficient of determination; SEE – standardna napaka ocene/ standard error of estimation; ME, NEL – presnovljiva energija/ metabolizable energy, neto energija za laktacijo/ net energy for lactation, v MJ kg$^{-1}$ sušine/ in MJ kg$^{-1}$ dry matter; SB, SV, SP, SM; surove beljakovine/ crude protein; surova vlaknina/ crude fibre, surovi pepel/ crude ash, SM – surove maščobe/ crude fat, v g kg$^{-1}$ sušine/ in g kg$^{-1}$ dry matter.

Enačbe za napoved energijske vrednosti zelene krme in travne silaže so zanesljivejše od enačb za mrvo. Pri zeleni krmi se je standardna napaka ocene (SEE) za NEL gibala od 0,23 do 0,28 MJ, pri travni silaži od 0,24 do 0,27 MJ, pri mrvi pa od 0,27 do 0,30 MJ. Z izjemo zelene krme enačbe, ki so bile izdelane za vsako košnjo posebej, nimajo prednosti pred enačbami za vse košnje skupaj.

4. ZAKLJUČKI

Na podlagi validacijskega niza vzorcev z znanimi in vivo določenimi prebavljetvostmi se je izkazalo, da energijsko vrednost voluminozne krme najbolj zanesljivo ocenimo z NIRS in sicer tako, da v prvem koraku ocenimo količino plina po hohenheimskem plinskem preskusu, KDV$_{OS}$ in komponente Weendske analize, v drugem

5. LITERATURA